Lecture 26: Influence and KKL Theorem

Lecture 26: Influence and KKL Theorem

▲□→ ▲ 三→ ▲ 三→

э

- Let $f(x_1, \ldots, x_n)$ be a boolean function
- The *influence of x_i* represents the probability (over random choice of all other variables) that *f* is sensitive to the value of *x_i*
- Alternately,

$$\mathsf{Inf}_i(f) := \mathbb{E}_{x_{[n]\setminus\{i\}} \stackrel{\mathfrak{s}}{\leftarrow} \{0,1\}^{n-1}} [f(x) \neq f(x+e_i)],$$

where e_i is the element with 1 exactly at the *i*-th position and 0 everywhere else

Lecture 26: Influence and KKL Theorem

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Let $J \subseteq [n]$ be a subset of indices
- Influence of *J* is represented by:

$$\mathsf{lnf}_J(f) := \mathop{\mathbb{E}}_{x_{\overline{J}} \leftarrow \{0,1\}^{\overline{J}}} [f(x) \text{ is not constant}]$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Examples

- AND_n is the function that outputs the AND of its n inputs. The $Inf_i(AND_n)$, for any i, is the probability that AND_n is sensitive to x_i . That happens exactly when all others input bits are 1, i.e. with probability $2^{-(n-1)}$.
- OR_n also has identical influence.
- MAJ_n, for odd n, outputs the majority bit of n input bits. The $\ln f_i(MAJ_n)$ is exactly the probability that the number of 0s and 1s in the remaining inputs bits is equal. This happens with probability $2^{-(n-1)} \binom{n-1}{(n-1)/2} \approx n^{-1/2}$.
- Note that sensitivity of AND_n is very low; but it cannot be *high* because the output of AND_n is constant with ≈ 1 probability. But, when the output of the function is nearly balanced does some variable have high influence?

・ロト ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・

- Note that MAJ_n has balanced output and its variables have $\approx n^{-1/2}$ influence.
- In fact, any J with size $\approx n^{1/2}$ has constant influence.
- Think: Are there balanced functions with lesser influence?
- TRIBES_{*s*,*w*} is the OR_{*s*} of AND_{*w*} of n = sw input bits. That is, interpret the input as *s* blocks of *w* bits each. Apply AND_{*w*} on each block and output the OR_{*s*} of the ANDs.
- Think: For what values of s and w is $TRIBES_{s,w}$ balanced?
- Think: For these values of *s* and *w*, what is the influence of any variable?

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Theorem (Kahn-Kalai-Linial)

For every balanced function f, there exists a variable with influence at least $\approx \log n/n$.

- We will show a result by Talagrand (presented next slide)
- Prove the KKL result using that result
- Think: This is asymptotically tight!

・ 同 ト ・ ヨ ト ・ ヨ ト

Talagrand's Result

Lemma

Let g be a function with $\|g\|_2 \neq \|g\|_{3/2}$, then:

$$\sum_{S \neq \emptyset} \frac{\widehat{g}(S)^2}{|S|} \leq \frac{2.5 \left\| g \right\|_2^2}{\log \left\| g \right\|_2 / \left\| g \right\|_{3/2}}$$

• We apply Hypercontractivity with p = 3/2, q = 2 and $\rho^2 = 1/2$ $\|g\|_{3/2}^2 \ge \|T_{\rho}(g)\|_2^2 = \sum_{S} \widehat{g}(S)^2 / 2^{|S|} \ge \sum_{S: |S|=k} g(S)^2 / 2^k$

That is, for any k > 0, we have:

$$\sum_{S: |S|=k} \frac{g(S)^2}{|S|} \leq \frac{2^k}{k} \|g\|_{3/2}^2$$

Lecture 26: Influence and KKL Theorem

소 曰 ▷ (本) □ ▷ (本) □ ▷ (本) □ ▷ (本)

Proof

• Therefore, for any *m*, we have:

$$\begin{split} \sum_{S \neq \emptyset} \frac{\widehat{g}(S)^2}{|S|} &= \sum_{1 \leqslant k \leqslant m} \sum_{S \colon |S| = k} \frac{\widehat{g}(S)^2}{|S|} + \sum_{S \colon |S| > m} \frac{\widehat{g}(S)^2}{|S|} \\ &\leqslant \left(\sum_{1 \leqslant k \leqslant m} \frac{2^k}{k} \right) \|g\|_{3/2}^2 + \sum_{S \colon |S| > m} \frac{\widehat{g}(S)^2}{(m+1)} \\ &\leqslant \left(\sum_{1 \leqslant k \leqslant m} \frac{2^k}{k} \right) \|g\|_{3/2}^2 + \frac{1}{(m+1)} \|g\|_2^2 \end{split}$$

• Choose largest *m* such that $2^m \|g\|_{3/2}^2 \leq \|g\|_2^2$. Using the maximality property, we have: $(m+1) > 2 \log \|g\|_2 / \|g\|_{3/2}$

ヘロト 人間ト ヘヨト ヘヨト

• By induction we can prove the following upper bound:

$$\sum_{1 \leqslant k \leqslant m} \frac{2^k}{k} \leqslant \frac{2 \cdot 2^{m+1}}{(m+1)}$$

• So, overall we have:

$$\sum_{S \neq \emptyset} \frac{\widehat{g}(S)^2}{|S|} \leqslant \frac{4 \cdot 2^m}{(m+1)} \|g\|_{3/2}^2 + \frac{1}{(m+1)} \|g\|_2^2$$
$$\leqslant \frac{(4+1)}{(m+1)} \|g\|_2^2 \leqslant \frac{5}{2 \log \|g\|_2 / \|g\|_{3/2}} \|g\|_2^2$$

• This gives the overall bound of the lemma

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・

Using Talagrand's Result to get KKL Theorem

- For i ∈ [n], define g_i(x) := f(x) f(x + e_i) (the '-' sign in the definition is subtraction over ℝ and '+' sign in the definition is addition over {0,1}ⁿ)
- Note that $\widehat{g_i}(S) = 2\widehat{f}(S)$, if $i \in S$; otherwise, $\widehat{g_i}(S) = 0$
- Note that: $\mathbb{E}_{x \leftarrow \{0,1\}^n}[|g_i(x)|] = \inf_i(f)$
- Since f is a boolean function, g_i has output in $\{-1, -1\}$
- Therefore, for $p \ge 1$, we have: $\|g_i\|_p^p = \|g_i\|_1 = \ln f_i(f)$
- So, $\|g_i\|_2 = \ln f_i(f)^{1/2}$ and $\|g_i\|_{3/2} = \ln f_i(f)^{2/3}$
- Using this, we can deduce:

$$\|g_i\|_2^2 = \ln f_i(f)$$
$$\log \|g\|_2 / \|g\|_{3/2} = (1/6) \log 1 / \ln f_i(f)$$

Proof Continued

• Use Talagrand's Result on g_i:

$$\sum_{S \neq \emptyset} \frac{\widehat{g_i}(S)^2}{|S|} \leqslant \frac{15 \mathsf{lnf}_i(f)}{\log 1/\mathsf{lnf}_i(f)}$$

• Now, let us understand the relation between the left-hand-side using *f*'s Fourier coefficient:

$$\sum_{S \neq \emptyset} \frac{\widehat{g_i}(S)^2}{|S|} = \sum_{S: i \in S} \frac{4\widehat{f}(S)^2}{|S|}$$

• Previous two inequalities gives:

$$\sum_{S:\ i\in S}\frac{\widehat{f}(S)^2}{|S|} \leqslant (15/4)\frac{\mathsf{lnf}_i(f)}{\mathsf{log}\,1/\mathsf{lnf}_i(f)}$$

Lecture 26: Influence and KKL Theorem

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof Continued

• Summing the previous inequality over all $i \in [n]$, we get:

$$(15/4)\sum_{i\in[n]}\frac{\mathsf{lnf}_i(f)}{\log 1/\mathsf{lnf}_i(f)} \ge \sum_{i\in[n]}\sum_{S\colon i\in S}\frac{\widehat{f}(S)^2}{|S|} \stackrel{(*)}{=} \sum_{S\neq\emptyset}\widehat{f}(S)^2 \stackrel{(\dagger)}{=} \mathsf{Var}[f]$$

The (*) equality is because the term $\widehat{f}(S)^2/|S|$ is considered once for every $i \in S$, i.e. |S| times. The (†) equality is because $\operatorname{Var}[f] = \mathbb{E}[f^2] - \mathbb{E}[f]^2 = \sum_{S \neq \emptyset} \widehat{f}(S)^2$.

- A "nearly balanced f" has $Var[f] = \Omega(1)$
- So, we have:

$$\sum_{i \in [n]} \frac{\ln f_i(f)}{\log 1 / \ln f_i(f)} \ge \Omega(1)$$

• So, there exists $i = i^* \in [n]$ such that:

$$\frac{\mathsf{Inf}_i(f)}{\log 1/\mathsf{Inf}_i(f)} \geqslant \Omega(1/n)$$

• That is $\ln f_{i^*}(f) \ge \Omega(\log n/n)$ (the KKL Result). (In the the term of ter

Lecture 26: Influence and KKL Theorem