Lecture 26: Influence and KKL Theorem

- Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a boolean function
- The influence of x_{i} represents the probability (over random choice of all other variables) that f is sensitive to the value of x_{i}
- Alternately,

$$
\operatorname{lnf}_{i}(f):=\underset{x_{[n] \backslash\{i\}} \leftrightarrows\{0,1\}^{n-1}}{\mathbb{E}}\left[f(x) \neq f\left(x+e_{i}\right)\right],
$$

where e_{i} is the element with 1 exactly at the i-th position and 0 everywhere else

- Let $J \subseteq[n]$ be a subset of indices
- Influence of J is represented by:

$$
\operatorname{lnf} J(f):=\underset{x_{J}{ }^{\frac{S}{\leftarrow}}\{0,1\}^{J}}{\mathbb{E}}[f(x) \text { is not constant }]
$$

Examples

- AND_{n} is the function that outputs the AND of its n inputs. The $\operatorname{Inf}_{i}\left(\mathrm{AND}_{n}\right)$, for any i, is the probability that AND_{n} is sensitive to x_{i}. That happens exactly when all others input bits are 1 , i.e. with probability $2^{-(n-1)}$.
- OR_{n} also has identical influence.
- MAJ_{n}, for odd n, outputs the majority bit of n input bits. The $\operatorname{lnf}_{i}\left(\mathrm{MAJ}_{n}\right)$ is exactly the probability that the number of 0 s and 1 s in the remaining inputs bits is equal. This happens with probability $2^{-(n-1)}\binom{n-1}{(n-1) / 2} \approx n^{-1 / 2}$.
- Note that sensitivity of AND_{n} is very low; but it cannot be high because the output of AND_{n} is constant with ≈ 1 probability. But, when the output of the function is nearly balanced does some variable have high influence?

Example

- Note that MAJ_{n} has balanced output and its variables have $\approx n^{-1 / 2}$ influence.
- In fact, any J with size $\approx n^{1 / 2}$ has constant influence.
- Think: Are there balanced functions with lesser influence?
- TRIBES $_{s, w}$ is the OR_{s} of AND_{w} of $n=s w$ input bits. That is, interpret the input as s blocks of w bits each. Apply AND $_{w}$ on each block and output the OR_{s} of the ANDs.
- Think: For what values of s and w is TRIBES $_{s, w}$ balanced?
- Think: For these values of s and w, what is the influence of any variable?

Theorem (Kahn-Kalai-Linial)

For every balanced function f, there exists a variable with influence at least $\approx \log n / n$.

- We will show a result by Talagrand (presented next slide)
- Prove the KKL result using that result
- Think: This is asymptotically tight!

Lemma

Let g be a function with $\|g\|_{2} \neq\|g\|_{3 / 2}$, then:

$$
\sum_{S \neq \emptyset} \frac{\widehat{g}(S)^{2}}{|S|} \leqslant \frac{2.5\|g\|_{2}^{2}}{\log \|g\|_{2} /\|g\|_{3 / 2}}
$$

- We apply Hypercontractivity with $p=3 / 2, q=2$ and $\rho^{2}=1 / 2$

$$
\|g\|_{3 / 2}^{2} \geqslant\left\|T_{\rho}(g)\right\|_{2}^{2}=\sum_{S} \widehat{g}(S)^{2} / 2^{|S|} \geqslant \sum_{S:|S|=k} g(S)^{2} / 2^{k}
$$

That is, for any $k>0$, we have:

$$
\sum_{S:|S|=k} \frac{g(S)^{2}}{|S|} \leqslant \frac{2^{k}}{k}\|g\|_{3 / 2}^{2}
$$

- Therefore, for any m, we have:

$$
\begin{aligned}
\sum_{S \neq \emptyset} \frac{\widehat{g}(S)^{2}}{|S|} & =\sum_{1 \leqslant k \leqslant m} \sum_{S:|S|=k} \frac{\widehat{g}(S)^{2}}{|S|}+\sum_{S:|S|>m} \frac{\widehat{g}(S)^{2}}{|S|} \\
& \leqslant\left(\sum_{1 \leqslant k \leqslant m} \frac{2^{k}}{k}\right)\|g\|_{3 / 2}^{2}+\sum_{S:|S|>m} \frac{\widehat{g}(S)^{2}}{(m+1)} \\
& \leqslant\left(\sum_{1 \leqslant k \leqslant m} \frac{2^{k}}{k}\right)\|g\|_{3 / 2}^{2}+\frac{1}{(m+1)}\|g\|_{2}^{2}
\end{aligned}
$$

- Choose largest m such that $2^{m}\|g\|_{3 / 2}^{2} \leqslant\|g\|_{2}^{2}$. Using the maximality property, we have: $(m+1)>2 \log \|g\|_{2} /\|g\|_{3 / 2}$
- By induction we can prove the following upper bound:

$$
\sum_{1 \leqslant k \leqslant m} \frac{2^{k}}{k} \leqslant \frac{2 \cdot 2^{m+1}}{(m+1)}
$$

- So, overall we have:

$$
\begin{aligned}
\sum_{S \neq \emptyset} \frac{\widehat{g}(S)^{2}}{|S|} & \leqslant \frac{4 \cdot 2^{m}}{(m+1)}\|g\|_{3 / 2}^{2}+\frac{1}{(m+1)}\|g\|_{2}^{2} \\
& \leqslant \frac{(4+1)}{(m+1)}\|g\|_{2}^{2} \leqslant \frac{5}{2 \log \|g\|_{2} /\|g\|_{3 / 2}}\|g\|_{2}^{2}
\end{aligned}
$$

- This gives the overall bound of the lemma

Using Talagrand's Result to get KKL Theorem

- For $i \in[n]$, define $g_{i}(x):=f(x)-f\left(x+e_{i}\right)$ (the '-' sign in the definition is subtraction over \mathbb{R} and ' + ' sign in the definition is addition over $\{0,1\}^{n}$)
- Note that $\widehat{g}_{i}(S)=2 \widehat{f}(S)$, if $i \in S$; otherwise, $\widehat{g}_{i}(S)=0$
- Note that: $\mathbb{E}_{x \stackrel{\S}{\leftarrow}\{0,1\}^{n}}\left[\left|g_{i}(x)\right|\right]=\operatorname{lnf}_{i}(f)$
- Since f is a boolean function, g_{i} has output in $\{-1,-1\}$
- Therefore, for $p \geqslant 1$, we have: $\left\|g_{i}\right\|_{p}^{p}=\left\|g_{i}\right\|_{1}=\operatorname{lnf}_{i}(f)$
- So, $\left\|g_{i}\right\|_{2}=\operatorname{lnf}_{i}(f)^{1 / 2}$ and $\left\|g_{i}\right\|_{3 / 2}=\operatorname{lnf}_{i}(f)^{2 / 3}$
- Using this, we can deduce:

$$
\begin{aligned}
\left\|g_{i}\right\|_{2}^{2} & =\operatorname{lnf}_{i}(f) \\
\log \|g\|_{2} /\|g\|_{3 / 2} & =(1 / 6) \log 1 / \operatorname{lnf}_{i}(f)
\end{aligned}
$$

- Use Talagrand's Result on g_{i} :

$$
\sum_{S \neq \emptyset} \frac{\widehat{g}_{i}(S)^{2}}{|S|} \leqslant \frac{15 \operatorname{lnf}_{i}(f)}{\log 1 / \operatorname{lnf}_{i}(f)}
$$

- Now, let us understand the relation between the left-hand-side using f 's Fourier coefficient:

$$
\sum_{S \neq \emptyset} \frac{\widehat{g}_{i}(S)^{2}}{|S|}=\sum_{S: i \in S} \frac{4 \widehat{f}(S)^{2}}{|S|}
$$

- Previous two inequalities gives:

$$
\sum_{S: i \in S} \frac{\widehat{f}(S)^{2}}{|S|} \leqslant(15 / 4) \frac{\operatorname{lnf}_{i}(f)}{\log 1 / \operatorname{lnf}_{i}(f)}
$$

- Summing the previous inequality over all $i \in[n]$, we get:

$$
(15 / 4) \sum_{i \in[n]} \frac{\operatorname{lnf}_{i}(f)}{\log 1 / \operatorname{lnf}_{i}(f)} \geqslant \sum_{i \in[n]} \sum_{S: i \in S} \frac{\widehat{f}(S)^{2}}{|S|} \stackrel{(*)}{=} \sum_{S \neq \emptyset} \widehat{f}(S)^{2} \stackrel{(\dagger)}{=} \operatorname{Var}[f]
$$

The $(*)$ equality is because the term $\widehat{f}(S)^{2} /|S|$ is considered once for every $i \in S$, i.e. $|S|$ times. The (\dagger) equality is because $\operatorname{Var}[f]=\mathbb{E}\left[f^{2}\right]-\mathbb{E}[f]^{2}=\sum_{S \neq \emptyset} \widehat{f}(S)^{2}$.

- A "nearly balanced f " has $\operatorname{Var}[f]=\Omega(1)$
- So, we have:

$$
\sum_{i \in[n]} \frac{\operatorname{lnf}_{i}(f)}{\log 1 / \operatorname{lnf}}{ }_{i}(f) \geqslant \Omega(1)
$$

- So, there exists $i=i^{*} \in[n]$ such that:

$$
\frac{\operatorname{lnf}_{i}(f)}{\log 1 / \operatorname{lnf}_{i}(f)} \geqslant \Omega(1 / n)
$$

- That is $\operatorname{lnf}_{i^{*}}(f) \geqslant \Omega(\log n / n)$ (the KKL Result)

